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Abstract—Coded caching is an effective technique to utilize
multicasting opportunities to reduce the data transmission load in
cached networks. In such a scheme, each file in the data center or
library is usually divided into a number of packets to pursue a low
broadcasting rate based on the designed placements at each user’s
cache. However, the implementation complexity of this scheme
increases with the number of packets. It is crucial to design a
scheme with a small subpacketization level, while maintaining
a relatively low transmission rate. Recently, a combinatorial
structure called placement delivery array (PDA) was proposed
as an effective tool to design coded caching schemes with a
low subpacketization level. This paper proposes a novel PDA
construction by selecting proper orthogonal arrays (POAs). It
generalizes the existing construction, making it suitable to the
scenario with a more flexible memory size. Based on the proposed
PDA construction, a new coded caching scheme with the coded
placement is further proposed. It is shown that the proposed
schemes can yield a lower subpacketization level or transmission
rate over the benchmark schemes.

Index Terms—Coded caching, placement delivery array, proper
orthogonal array, subpacketization

I. INTRODUCTION

The dramatic growth in the number of network users and
their rising demands for video streaming services can easily
cause severe network congestions during the peak hours.
Coded caching system was proposed as a promising tool to
reduce the data transmission load during the peak hours by
utilizing the memories distributed across the network. The
network model consists of a central server containing N files of
equal size, which provides service to K users over an error free
broadcasting channel. Each user is assumed to have a cache
memory with a size of M files. Coded caching operation has
two phases. First, in the placement phase, the server sends
the properly designed contents to the cache of each user
without knowledge of the demands. Afterwards, in the delivery
phase, the server will be informed with the users’ demands,
and broadcast the coded packets of size R files to the users
over an error free broadcasting channel. The user’ demands
can be satisfied with the assistance of the contents in their
own caches. The quantity R is referred to as the transmission
rate (or rate), i.e., the smallest number of files that must be
communicated so that the demand of any user can be satisfied.
A coded caching scheme is called an F -division scheme if each
file can be equally divided into F packets, which is called
the subpacketization level. If the packets are cached directly

without coding in the placement phase, it is called an uncoded
placement. Otherwise, it is called a coded placement.

It is known that the scheme introduced by Maddah-Ali and
Niesen [1], which we refer as the MN scheme, has the optimal
rate under the constraints of uncoded placement and K ≤ N
[2]. However, its subpacketization level increases exponentially
with the number of users K, which makes it impractical for
large networks. Reducing the subpacketization level of the
coded caching schemes has been a major problem during the
past few years. It helps bridge the gap between practical im-
plementation and theoretical studies. There exist some works
on reducing the subpacketization level of the MN scheme but
they trade it with an increased transmission rate [3]–[18]. E.g.,
Yan et al. [11] proposed a combinatorial structure called the
placement delivery array (PDA), and showed that the MN
scheme can be represented by a special PDA. Shangguan et al.
[7] later showed that many previously existing coded caching
schemes could also be represented by the appropriate PDAs.
With the introduction of PDA, various coded caching schemes
with a lower subpacketization level than the MN scheme were
proposed in [3], [14]–[18]. Other combinatorial constructions
for reducing the subpacketization level can be referred to [4],
[6]–[8], [12], [13].

This paper proposes a novel construction of PDAs through
the so called proper orthogonal arrays (POAs). The correspond-
ing coded caching scheme can reduce the number of packets
by a factor of q without sacrificing the transmission rate over
the existing scheme of [15], where q is an integer that is greater
than or equal to two. It also yields a more flexible memory size
over the scheme of [16]. The proposed construction can be seen
as a generalization of [16], but it requires a delicate selection
of the POAs. Based on the proposed PDAs, this research finds
out that some packets cached by the users have no multicasting
opportunities in the delivery phase, which indicates there is no
coding gain. However, if we modify the uncoded placement
into the coded placement, a coded caching scheme with a
smaller subpacketization level and memory ratio is further
proposed.

II. PREREQUISITES

This section first reviews the centralized coded caching sys-
tem and PDA. Then, the definition of POA will be introduced.
Some key notations are introduced as follows.
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Notations: Let bolded capital letters, bolded lower-case
letters, and curlicue letters denote arrays, vectors, and sets,
respectively. Symbol ⊕ represents the exclusive-or (XOR) op-
eration. Let N+ denote the set of positive integers. The sets of
consecutive integers are denoted as [x : y] = {x, x+1, . . . , y}.
We use

(
[0:m−1]

t

)
to represent the collection of all subsets

of [0 : m − 1] with size t. Given an l × m matrix F and
a subset S ⊆ [0 : m − 1], let F|S denote a submatrix
of F, which is obtained by taking all the columns indexed
by j ∈ S . Let P(i, j) denote the entry of array P with
row and column indexed by i and j, respectively. Further
let (A0;A1; . . . ;An) denote an array obtained by arranging
arrays (or row vectors) A0,A1, . . . ,An from top to bottom.

E.g., (A0;A1) =

(
A0

A1

)
. Finally, all the vectors in examples

are written as strings. E.g., (1, 0, 1, 0) is written as (1010).

A. Centralized Coded Caching System

In a centralized coded caching system, a server containing N
files with equal size is connected to K users through an error
free shared link, as shown in Fig.1. Each user has a cache with
a size of M files, where M < N . The N files and K users are
denoted by W = {W0,W1, . . . ,WN−1} and K = [0 : K − 1],
respectively. An F -division (K,M,N) coded caching scheme
consists of two phases as follows.

Fig. 1: Coded caching system.

• Placement Phase: Each file is divided into F equal
packets, i.e., Wn = {Wn,j |j ∈ [0 : F − 1]}, n ∈ [0 : N − 1].
Each user can access the file set W . Let Zk denote the packet
subset of W that is cached by user k, where k ∈ K. Note
that the size of Zk cannot be greater than each user’s cache
memory size M , i.e., |Zk| ≤M .
• Delivery Phase: Each user requests an arbitrary file inW .

The request vector is denoted by d = (d0, d1, . . . , dK−1), i.e.,
user k requests file Wdk , where k ∈ K and dk ∈ [0 : N − 1].
Once the server receives the request vector d, it broadcasts at
most RF packets such that each user can recover its requested
file together with the contents in its own cache.

B. Placement Delivery Array

Definition 1 [11]. Given K,F,Z, S ∈ N+, an F ×K array
P = (P(i, j)), where i ∈ [0 : F − 1], j ∈ [0 : K − 1], and
P(i, j) ∈ [0 : S− 1]∪{∗}, is called a (K,F,Z, S) PDA if the
following conditions are satisfied:

C1. Symbol “ ∗ ” appears exactly Z times in each column;

C2. Each integer of [0 : S − 1] appears at least once in the
array;

C3. For any two distinct entries P(i1, j1) and P(i2, j2),
P(i1, j1) = P(i2, j2) = s is an integer only if

(a). i1 6= i2, j1 6= j2, i.e., they lie in distinct rows and
distinct columns;

(b). P(i1, j2) = P(i2, j1) = ∗, i.e., the corresponding 2× 2
subarray formed by rows i1, i2 and columns j1, j2 must be in
one of the following forms(

s ∗
∗ s

)
,
(
∗ s
s ∗

)
.

E.g., the following array P is a (4, 2, 1, 2) PDA.

P =

(
0 ∗ 1 ∗
∗ 0 ∗ 1

)
(1)

Algorithm 1 Coded Caching Scheme Based on PDA [11]
1: Procedure Placement (P, W)
2: Split each file Wn ∈ W into F packets as Wn = {Wn,j |
j ∈ [0 : F − 1]}.
3: For k ∈ K do
4: Zk ← {Wn,j | P(j, k) = ∗,∀n ∈ [0 : N − 1]};
5: Procedure Delivery (P,W,d)
6: For s = 0, 1, . . . , S − 1 do
7: Server sends ⊕P(j,k)=s,j∈[0:F−1],k∈[0:K−1]Wdk,j .

Algorithm 1 has been introduced to realize the PDA based
coded caching schemes in [11]. Given a (K,F,Z, S) PDA P
with columns representing the user indices and rows represent-
ing the packet indices, if P(j, k) = ∗, user k has cached the
jth packet of all the files. Condition C1 of Definition 1 implies
that all the users have the same memory size and the memory
ratio is M

N = Z
F . If P(j, k) = s, where s ∈ [0 : S − 1],

the jth packet of all the files is not cached by user k. The
XOR of the requested packets indicated by s will be broadcast
by the server at time slot s. Condition C3 of Definition 1
guarantees that user k can obtain its required packet, since
it has cached all the other packets in the multicast message
except the requested one. Finally, Condition C2 of Definition
1 implies that the number of packets transmitted by the server
is exactly S and the transmission rate is R = S

F . Furthermore,
the coding gain in each time slot s ∈ [0 : S − 1], denoted by
gs, equals to the occurrences of s in P. This is because the
coded packet broadcast at time slot s is useful for gs users.
Based on Algorithm 1, the following result can be obtained.

Lemma 1 [11]. Given a (K,F,Z, S) PDA, there always
exists an F -division (K,M,N) coded caching scheme with a
memory ratio of M

N = Z
F and a transmission rate of R = S

F .

C. Orthogonal Arrays and Proper Orthogonal Arrays

Definition 2 [19]. Given any m, q, t ∈ N+ with q ≥ 2 and
t ≤ m, let F denote an l×m matrix defined over [0 : q−1]. It
is called an orthogonal array (OA) with a strength of t, if for
each subset S ∈

(
[0:m−1]

t

)
with size t, every t-length (t ≤ m)
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row vector appears exactly λ = l
qt times in F|S . It is denoted

as OAλ(l,m, q, t),
Since l = λqt, it can be simplified into OAλ(m, q, t), where

λ is the index of the OA. Note that if λ = 1, it can be omitted.
E.g., with m = 3, q = 2 and t = 2, we can consider the
following matrix

F = (f0; f1; f2; f3) = ((110); (000); (101); (011)). (2)

For each S ∈
(
[0:2]
2

)
, we have

F|{0,1} = ((11); (00); (10); (01));

F|{1,2} = ((10); (00); (01); (11));

F|{0,2} = ((10); (00); (11); (01)).

It can be seen that F in (2) satisfies Definition 2. It is an
OA(3, 2, 2).

Based on the definition of OA, we also need a particular type
of OA. It is called the proper OA (POA), which will enable
the design of the new PDAs.

Definition 3. Given any m, q ∈ N+ with q ≥ 2 and m ≥
2, an OA(m, q,m − 1) is called a proper OA, denoted by
POA(m, q,m−1), if the sum (mod q) of each row is a constant.

Since the POAs are crucial to our construction, we need to
show the existence of POAs. In fact, it is true that the POAs
always exist for any integers m and q, where m ≥ 2 and q ≥ 2.

Lemma 2. Let F denote a qm−1×m matrix with the set of
all rows given as

F = {(f0, f1, . . . , fm−2, x −
m−2∑
i=0

fi) | f0, f1, . . . , fm−2 ∈

[0 : q − 1]},
where x ∈ [0 : q − 1], m ≥ 2 and q ≥ 2, then F is a
POA(m, q,m− 1).

Proof: Detailed proof can be found in [20].
It can be seen that the matrix of (2) is a POA(3, 2, 2) since

the sum of each row is 0. It is worthwhile pointing out that
an OA(m, q,m− 1) is not always a POA(m, q,m− 1). E.g.,
with m = 3, q = 3 and t = 2, the following matrix F is an
OA(3, 3, 2), but it is not a POA(3, 3, 2).

F =((000); (011); (022); (101); (112); (120); (202); (210);

(221)).

III. A NEW PDA CONSTRUCTION VIA POAS

Before introducing our construction, we first present our
design intuition.

A. Design Intuition

Given a (K,F,Z, S) PDA P′, if we replace Z0 integers in
each column of P′ by “ ∗ ”s, the resulting array will be a
(K,F,Z + Z0, S0) PDA, denoted by P0. Note that S0 ≤ S
always holds. This implies that the transmission rate of the
scheme based on P0 may be smaller than the scheme based
on P′. Furthermore, we prefer to design a PDA P = (P0;P1)
with the same memory ratio as P0 by adding a well designed
F0×K array P1 to P0 without increasing S0. This is because
the new transmission rate will be smaller, as S0

F+F0
< S0

F . The

following example illustrates the main idea of our construction.
Given the following (10, 5, 1, 20) PDA

P′ =


∗ 12 14 6 8 ∗ 11 10 1 0
0 ∗ 15 16 9 12 13 3 2 ∗
1 2 ∗ 17 18 14 5 4 ∗ 15
10 3 4 ∗ 19 6 7 ∗ 17 16
11 13 5 7 ∗ 8 ∗ 19 18 9

 ,

if we replace its integers from 10 to 19 by “ ∗ ”s, a new array
P0 = (P0,0 P0,1) can be obtained as follows.

P0,0 P0,1

P0 =


∗ ∗ ∗ 6 8 ∗ ∗ ∗ 1 0
0 ∗ ∗ ∗ 9 ∗ ∗ 3 2 ∗
1 2 ∗ ∗ ∗ ∗ 5 4 ∗ ∗
∗ 3 4 ∗ ∗ 6 7 ∗ ∗ ∗
∗ ∗ 5 7 ∗ 8 ∗ ∗ ∗ 9

 .

Subsequently, an appropriate array P1 can be designed by
adjusting the integers in P0, as shown in Fig.2. Adding the
well designed array P1 to P0 from top to bottom, a new
(10, 10, 6, 10) PDA P = (P0;P1) can be obtained as follows.

P =



∗ ∗ ∗ 6 8 ∗ ∗ ∗ 1 0
0 ∗ ∗ ∗ 9 ∗ ∗ 3 2 ∗
1 2 ∗ ∗ ∗ ∗ 5 4 ∗ ∗
∗ 3 4 ∗ ∗ 6 7 ∗ ∗ ∗
∗ ∗ 5 7 ∗ 8 ∗ ∗ ∗ 9
∗ ∗ ∗ 3 4 1 0 ∗ ∗ ∗
7 ∗ ∗ ∗ 5 2 ∗ ∗ ∗ 3
6 8 ∗ ∗ ∗ ∗ ∗ ∗ 5 4
∗ 9 0 ∗ ∗ ∗ ∗ 6 7 ∗
∗ ∗ 1 2 ∗ ∗ 9 8 ∗ ∗


.

Fig. 2: The procedure of generating P1 from P0: P0 is divided into
two 5 × 5 arrays, i.e., P0 = (P0,0 P0,1). Then, from top to bottom,
each row of P0,0 is cyclically shifted by two positions, resulting in
array P′

0,0. From left to right, each column of P′
0,0 is further cyclically

shifted by two positions, resulting in the left half of P1. Finally, from
left to right, each column of P0,1 is cyclically shifted by two positions,
resulting in the right half of P1.

In general, a PDA P = (P0;P1; . . . ;PL) constructed by the
above method can be viewed as replacing the same number of
integers by “ ∗ ”s in each column of a given baseline array P′,
and adding new arrays P1, . . . ,PL with the same memory ratio
as P0 from top to bottom. In order to minimize the transmission
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rate of the scheme based on P, one needs to guarantee if an
integer s in some row and column of P′ is replaced by “ ∗ ”,
all the entries of P′ containing s are also replaced by “ ∗
”s. Furthermore, the newly added arrays P1, . . . ,PL should be
well designed such that their integers are the same as those in
P0. This implies that the main technical challenge for the above
construction is how to design a baseline array P′ and the newly
added arrays P1, . . . ,PL that can satisfy such constraints.

It should be pointed out that our proposed PDA construction
is different with the construction of [15]. In the construction of
[15], all row indices of the newly added arrays are generated
by the same OA(m, q,m) and their integers are obtained by
moving the entries of a designed array in a counter clockwise
manner. Furthermore, if the technique of [15] is directly
applied to that of [16], the above constraints will be violated.
Therefore, in order to obtain a PDA with the largest possible
coding gain for each entry, some more empirical insights
and technical delicacies should be utilized so that the above
constraints can be satisfied.

B. New Construction

Based on the above observation, a novel framework of
constructing PDA can be introduced. Let us first introduce the
following notations for our construction.
• Given any q, z,m, t ∈ N+ with z < q and t < m, let

E = {(g0, g1, . . . , gt−1) | gi ∈ [0 : b q−1q−z c − 1], i ∈ [0 : t− 1]},
and let

Fgj = (f(j)0 ; f(j)1 ; . . . ; f(j)qm−1−1)

= ((f
(j)
0,0 , f

(j)
0,1 , . . . , f

(j)
0,m−1); (f

(j)
1,0 , f

(j)
1,1 , . . . , f

(j)
1,m−1); . . . ;

(f
(j)
qm−1−1,0, f

(j)
qm−1−1,1, . . . , f

(j)
qm−1−1,m−1))

(3)
denote a POA(m, q,m − 1) such that

∑m−1
r=0 f

(j)
s,r = x(q −

z), for s ∈ [0 : qm−1 − 1], where x =
∑t−1
i=0 g

(j)
i , gj =

(g
(j)
0 , g

(j)
1 , . . . , g

(j)
t−1) ∈ E , and E = {g0, g1, . . . , gb q−1

q−z ct−1
}.

• Let I = {{ξ0, ξ1, . . . , ξt−1} | {ξ0, ξ1, . . . , ξt−1} ∈(
[0:m−1]

t

)
, 0 ≤ ξ0 < ξ1 < · · · < ξt−1 < m} and

C = {(c0, c1, . . . , ct−1) | ci ∈ [0 : q − 1], i ∈ [0 : t− 1]}.
The new PDA construction can be proposed as follows.
Construction 1. Given any q, z,m, t ∈ N+ with z < q and

t < m, let K = {(I, c) = ({ξ0, ξ1, . . . , ξt−1}, (c0, c1, . . . , ct−1
)) | I ∈ I , c ∈ C} and F =

⋃
j∈[0:b q−1

q−z ct−1]
F (j)

gj , where F (j)
gj

= {(f(j)s , gj) = ((f
(j)
s,0 , f

(j)
s,1 , . . . , f

(j)
s,m−1), (g

(j)
0 , g

(j)
1 , . . . , g

(j)
t−1)

) | s ∈ [0 : qm−1 − 1]} and f(j)s ∈ Fgj . An F × K array
P = (P0; . . . ;Pj ; . . . ;Pb q−1

q−z ct−1
) can be constructed with the

entries of Pj = (Pj((f(j)s , gj), (I, c))) defined as

Pj((f(j)s , gj), (I, c)) =


(v, o(v)), if f (j)s,ξh

/∈ {ch, ch − 1, . . .

, ch − (z − 1)} for h ∈ [0

: t− 1];

∗, otherwise,
(4)

where (f(j)s , gj) ∈ F
(j)
gj , (I, c) ∈ K, and v = (v0, v1, . . . , vm−1

) ∈ [0 : q − 1]m such that

vi =

{
ch − g(j)h (q − z), if i = ξh, h ∈ [0 : t− 1];

f
(j)
s,i , otherwise.

(5)

Note that o(v) is the occurrence order of vector v in column
(I, c) and the computations are performed in mod q.

The following example illustrates the above construction.
Example 1. Given m = 2, q = 5 and t = 1, when z = 3,

we have b q−1q−z c = 2 and E = {(0), (1)}. Let F(0) and F(1)

denote two POA(2, 5, 1)s that are defined as

F(0) = ((00); (14); (23); (32); (41)),

F(1) = ((02); (11); (20); (34); (43)).

Note that the sum of each row of F(0) is 0 × 2 = 0 and the
sum of each row of F(1) is 1× 2 = 2. Hence, we have

F = (F(0) × {(0)}) ∪ (F(1) × {(1)});
K = {({ξ0}, (c0)) | ξ0 ∈ [0 : 1], c0 ∈ [0 : 4]}.

For ({ξ0}, (c0)) = ({0}, (0)) ∈ K and z = 3, we have {c0, c0
−1, c0− 2)} = {0, 3, 4}. Based on (4) and (5), for any ((f

(j)
s,0 ,

f
(j)
s,1 ), (g

(j)
0 )) ∈ F , we have P(((f (j)s,0 , f

(j)
s,1 ), (g

(j)
0 )), ({0}, (0)))

= ∗, if f (j)s,0 ∈ {0, 3, 4}; and P(((f (j)s,0 , f
(j)
s,1 ), (g

(j)
0 )), ({0}, (0)))

= (−2g(j)0 , f
(j)
s,1 ), if f

(j)
s,0 /∈ {0, 3, 4}. Moreover, based on

(4), if f (j)s,0 /∈ {0, 3, 4}, P(((f (j)s,0 , f
(j)
s,1 ), (g

(j)
0 )), ({0}, (0))) =

(−2g(j)0 , f
(j)
s,1 , o((−2g

(j)
0 , f

(j)
s,1 )). E.g., since (04) first occurs

in column ({0}, (0)), and the occurrence order starts from
0, we have P(((14), (0)), ({0}, (0))) = (040). Similarly,
we can obtain P(((f (j)s,0 , f

(j)
s,1 ), (g

(j)
0 )), ({ξ0}, (c0))) for any

((f
(j)
s,0 , f

(j)
s,1 ), (g

(j)
0 )) ∈ F and ({ξ0}, (c0)) ∈ K. As a result,

the following PDA P = (P0;P1) can be obtained.

IV. CHARACTERIZATION AND PERFORMANCE

This section presents the main results of this paper, including
the performance analyses of the proposed coded caching
schemes.

A. Main Results

Based on Construction 1, this subsection presents the new
coded caching schemes that are characterized in Theorems 3
and 4. Due to the space limit, their detailed proofs are omitted,
but can be found in [20].

Theorem 3. Given any q, z,m, t ∈ N+ with q ≥ 2, z < q
and t < m, there always exists an (

(
m
t

)
qt, b q−1q−z c

tqm−1,
b q−1q−z c

t[qm−1 − qm−t−1(q − z)t], qm−1(q − z)t) PDA which
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yields a b q−1q−z c
tqm−1-division (

(
m
t

)
qt,M,N) coded caching

scheme with a memory ratio of M
N = 1 − ( q−zq )t and a

transmission rate of R = (q−z)t

b q−1
q−z ct

.
The subpacketization advantage shown in Theorem 3 de-

pends on a delicate selection of POAs for generating the row
indices. As a result, our scheme can reduce the number of
packets by a factor of q without sacrificing the transmission
rate over the existing scheme of [15]. It also yields a more
flexible memory size over the scheme of [16].

It should be noted that there exist some useless “ ∗ ”s
(i.e., they are not contained in any subarray shown in C3-
(b) of Definition 1) in each column of the proposed PDAs.
Therefore, by deleting these useless “ ∗ ”s and utilizing the
maximum distance separable (MDS) codes in the placement
phase, the following result can be obtained with a smaller
subpacketization level and memory ratio than the scheme
characterized in Theorem 3.

Theorem 4. Given any q,m, t ∈ N+ with q ≥ 2 and t <
m, let z∗r denote the minimal integer in the set Gr = {z |
b q−1q−z c = r, z ∈ [1 : q − 1]}, where r ∈ [1 : q − 1]. There
exists an (

(
m
t

)
qt,M,N) coded caching scheme with a memory

ratio of M
N =

1−( q−z∗r
q )t

1−( q−z∗r
q )t+( q−z

q )t
, a transmission rate of R =

(q−z)t

b q−1
q−z ct(1−(

q−z∗r
q )t+( q−z

q )t)
, and a subpacketization level of F =

b q−1q−z c
tqm−1[1 + ( q−zq )t − (

q−z∗r
q )t].

B. Performance Analyses

We further compare our proposed schemes with the existing
ones. Their features are summarized in Table I.

When z = 1, our scheme characterized by Theorem 3 will
be the same as that of [16]. However, our scheme generalizes
it into having a more flexible memory size.

In the following we compare performance of the schemes
in Theorems 3, 4 and those in [1], [10], [12], [14], [15] with
K = 300. Let m = 3, t = 2, q = 10 and z ∈ [1 : 9] for the
schemes in Theorems 3, 4, and [15]; k = 300 and t ∈ [1 : 299]
for the MN scheme in [1]; c = 10, k = 30 and t ∈ [1 : 29]
for the scheme in [10]; k = 25 and t ∈ {1, 2, 22, 23} for the
scheme in [14]; m = 25, a = 2, λ = 1 and b ∈ [1 : 12] for the
scheme in [12]. Their subpacketization level F , memory ratio
M
N , and transmission rate R can be characterized as in Fig. 3.

It can be seen that both the transmission rate and sub-
packetization level of the schemes in Theorems 3 and 4
are closed to those of the scheme in [14], which is able

to achieve the minimum subpacketization level for a fixed
transmission rate. This implies that the schemes characterized
by Theorems 3 and 4 also yield a good performance. Since
our proposals yield a more flexible memory size, they have
a wider range of applications than the scheme of [14]. It can
also be seen that with the same number of users, memory ratio
and transmission rate, the scheme in Theorem 3 has a smaller
subpacketization level than that of [15]. The subpacketization
level of the scheme in Theorem 4 is even smaller than the
above two, while maintaining almost the same transmission
rate. When comparing with the schemes of [1], [10] and [12],
our proposed schemes in Theorems 3 and 4 have an advantage
in the subpacketization level, but they are at the cost of some
transmission rate.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

Scheme

Scheme

Scheme

 in Theorem 3

 in Theorem 4

 in [15]

MN Scheme in [1]

Scheme in [10]

Scheme in [14]

Scheme in [12]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Scheme in Theorem 3 

Scheme in Theorem 4 

Scheme in [15]

MN Scheme in [1] 

Scheme in [10] 

Scheme in [14] 

Scheme in [12]

Lower bound, K=N=300

0.8 0.9 1
0

5

10

15

Fig. 3: Subpacketization level and transmission rate comparison
between the schemes in Theorems 3, 4 and [1], [10], [12], [14], [15],
where K = 300.

V. CONCLUSION

This paper has proposed a novel construction of PDAs
via POAs. Two new coded caching schemes have also been
obtained, yielding a low subpacketization level and a more
flexible memory size. The first PDA scheme achieves an
improved subpacketization level over the existing one of [15]
with the same number of users, memory ratio and transmission
rate. The second PDA scheme further improves the subpacketi-
zation performance. Our analytical and numerical results have
shown that the proposed schemes are able to achieve better
subpacketization or transmission rate performances than the
known coded caching schemes.
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